Reg. No.:....

Name :

III Semester M.Sc. Degree (CBSS-Reg./Suppl./Imp.)
Examination, October - 2019
(2017 Admission Onwards)

MATHEMATICS

MAT 3C 12: FUNCTIONAL ANALYSIS

Time: 3 Hours

Max. Marks: 80

PART - A

Answer Four questions from this part. Each question carries 4 marks.

(4×4=16)

- **1.** Show that if $x_n \to x$ in l^2 then $x_n \to x$ in l^∞ .
- **2.** Give an example of an element in $L^2(\mathbb{R})$ but not in $L^1(\mathbb{R})$ and prove your claim.
- 3. Show that the norms $\|.\|_1$ and $\|.\|_{\infty}$ on K^n , n=1,2,... are equivalent.
- 4. Show that c_0 is a Banach space.
- 5. Show that the inverse of a bijective continuous map may not be continuous.
- **6.** Among l^p spaces, $1 \le p \le \infty$, select the Hilbert spaces and prove your claim.

PART - B

Answer 4 questions from this part without omitting any unit. Each question carries 16 marks. (4×16=64)

UNIT - I

7. a) Let $\|\cdot\|_j$ be a norm on a linear space X_j , j=1,2,...,m. Fix p such that $1 \le p \le \infty$. Fix x = (x(1),...,x(m)) in the product space

$$X = X_1 \times ... \times X_m$$
, let $||x||_p = ||x(1)||_1^p + ... + ||x(m)||_m^p)^{\frac{1}{p}}$,

If $1 \le p < \infty$ and $||x||_{\infty} = \max\{||x(1)||_1,...,||x(m)||_m\}$ Then show that $||...|_p$ is a norm on X. Also show that a sequence (x_n) converges to x in X if and only if $(x_n(j))$ converges to x(j) in X_j for every j=1, ..., m.

P.T.O.

K19P 1187

- Let X be a normed space. Then show that the following are equivalent. b)
 - Every closed and bounded subset of X is compact.
 - The subset $\{x \in X : ||x|| \le 1\}$ of X is compact.

X is finite dimensional.

- Let X and Y be normed space and $F: X \to Y$ be a linear map. Then 8. show that the following conditions are equivalent.
 - F is bounded on U(0,r) for some r > 0. i)
 - F is continuous at 0. ii)
 - iii) F is continuous on X.
 - iv) F is uniformly continuous on X.
 - $||F(x)|| \le \alpha ||x||$ for all $x \in X$ and some $\alpha > 0$.
 - The zero space Z(F) of F is closed in X and the linear map by $\tilde{F}(x+Z(F)) = F(x), x \in X$ is $\tilde{F}:X/Z(F)\to Y$ defined continuous.
 - Define bounded linear map and operator norm. b)
- State and prove Taylor-Foguel Theorem. 9. a)
 - Show that a Banach space cannot have a denumerable basis. b)

UNIT - II

- State and prove Uniform boundedness principle. 10. a)
 - Let X be a normed linear space and (x_n) be a sequence in X. Prove b) or disprove: (x_n) converges in X if and only if $f(x_n)$ converges in K for every $f \in X'$.
- Prove of disprove: The inverse of a bijective continuous map is 11. a) continuous.
 - Let X be a linear space over K. Consider subsets U and V of X, and b) $k \in K$ such that $U \subset V + kU$ Then show that every $x \in U$, there is a sequence v_n in V such that $x-(u_1+ku_2...+k^{n-1}u_n)\in k^nU, n=1,2...$
 - Define projection operator and give an example. C)
- **12.** a) State and prove open mapping theorem.
 - Show that the closed graph theorem may not hold if the range of the b) linear map is not a Banach space.

UNIT - III

13. a) State and prove Bessel's inequality.

- Let X be an inner product space, $\{u_1,u_2...\}$ be a countable orthonormal b) set in X and k_1, k_2, \dots belong to K. if X is a Hilbert space and $\sum_{n} |k_{n}|^{2} < \infty$, then prove that $\sum_{n} k_{n} u_{n}$ converges in X.
- State and prove Riesz representation Theorem. 14. a)
 - What do you mean by weak convergence? b)
- Let H be a Hilbert space. For $y \in H$, define $j_y: H' \to K$ **15.** a) by $j_y(f) = f(y), f \in H'$. Then prove that j_y is a continuous linear functional on H' and the map J from H to H'' defined by $J(y) = j_y, y \in H$, is a surjective linear isometry.

If the underlying space is a Hilbert space then show that Hahn-Banach b)

extension is unique.